ai 5

MathWorks - Neural Style Transfer Using Deep Learning (딥러닝을 사용한 신경망 스타일 전이)

https://kr.mathworks.com/help/images/neural-style-transfer-using-deep-learning.html?searchHighlight=style%20transfer%20&s_tid=srchtitle_support_results_3_style%20transfer 딥러닝을 사용한 신경망 스타일 전이 - MATLAB & Simulink - MathWorks 한국 이 예제의 수정된 버전이 있습니다. 사용자가 편집한 내용을 반영하여 이 예제를 여시겠습니까? kr.mathworks.com ● 데이터 불러오기 → 스타일 이미지로 고흐의 '별이 빛나는 밤'을 사용하고 콘텐츠 이미지로 바다 사진을 사용 % im2double 함수 : 이미지를 double 형식으로 변환 →픽셀 ..

MATLAB 2023.09.02

MathWorks - Extract Image Features Using Pretrained Network (사전 훈련된 신경망을 사용하여 영상 특징 추출하기)

https://kr.mathworks.com/help/deeplearning/ug/extract-image-features-using-pretrained-network.html 사전 훈련된 신경망을 사용하여 영상 특징 추출하기 - MATLAB & Simulink - MathWorks 한국 이 예제의 수정된 버전이 있습니다. 사용자가 편집한 내용을 반영하여 이 예제를 여시겠습니까? kr.mathworks.com ※ 사전 훈련된 컨볼루션 신경망에서 학습된 영상을 추출한 다음 추출한 특징을 사용하여 영상 분류기를 훈련시키는 예제 https://sanghyu.tistory.com/7 SVM(Support Vector Machine) 원리 어떠한 '분류'라는 문제를 풀기 위해 패턴..

MATLAB 2023.08.16

6. Random Forests

● Random Forest → 여러 개의 트리를 사용하며, 각 구성 트리의 예측값을 평균하여 예측을 수행 from sklearn.ensemble import RandomForestRegressor # 랜덤 포레스트 회귀 모델 객체 rf_model 생성 rf_model = RandomForestRegressor() # 생성한 랜덤 포레스트 모델을 훈련 데이터 train_X와 그에 해당하는 타겟 값 train_y에 학습시키기 rf_model.fit(train_X, train_y) # 학습된 랜덤 포레스트 모델을 사용하여 검증 데이터 val_X에 대한 예측값 저장 rf_var_predictions = rf_model.predict(val_X) # 검증 데이터에 대한 랜덤 포레스트 모델의 예측값인 rf_var..

5. Underfitting and Overfitting

● Overfitting (오버피팅) → 모델이 훈련 데이터에 너무 과하게 적합화되어 훈련 데이터의 잡음이나 노이즈까지 학습하여 실제 데이터에서의 성능이 저하되는 현상 ● Underfitting (언더피팅) → 모델이 데이터의 다양성과 복잡성을 충분히 반영하지 못하고, 너무 간단한 모델을 사용하여 데이터의 패턴을 제대로 파악하지 못하는 상태 ☞ 언더피팅과 오버피팅 사이에서 최적의 균형점을 찾아야 함 ● 결정 트리 크기 비교하기 → 모델이 데이터의 다양성과 복잡성을 충분히 반영하지 못하고, 너무 간단한 모델을 사용하여 데이터의 패턴을 제대로 파악하지 못하는 상태 → 어떤 크기의 결정 트리가 가장 좋은 성능을 보이는지 확인 후, 최적의 모델 크기를 선택 → 'scores' dictionary : candid..

4. Model Validation

● MAE (Mean Absolute Error, 평균 절대 오차) : 모든 절대 오차의 평균 ☞ 여기서 Error = Actual - Predicted (실제 값과 예측 값과의 차이) ● 데이터 나누기 → train_test_split() 함수 → scikit-learn 라이브러리의 함수이며, 데이터를 두 개로 분리해 줌 → 훈련세트(training data)와 평균 절대 오차 값을 계산하기 위한 검증 세트(validation data)로 분리 → random_state : 호출할 때마다 동일한 훈련 데이터 세트와 테스트 데이터 세트를 생성하기 위한 난수 시드(seed) 값 from sklearn.model_selection import train_test_split train_X, val_X, tra..